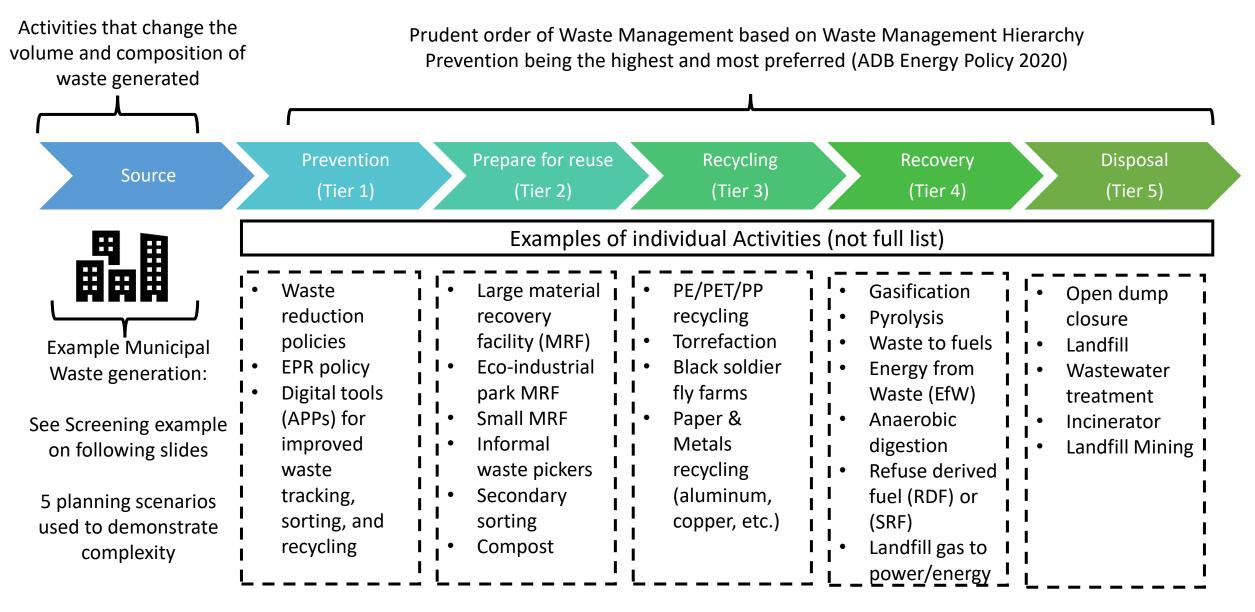
Energy, Waste and Data – The Future

Steve Peters, Senior Energy Specialist (Waste to Energy) Energy Sector Group, Sustainable Development and Climate Change Division

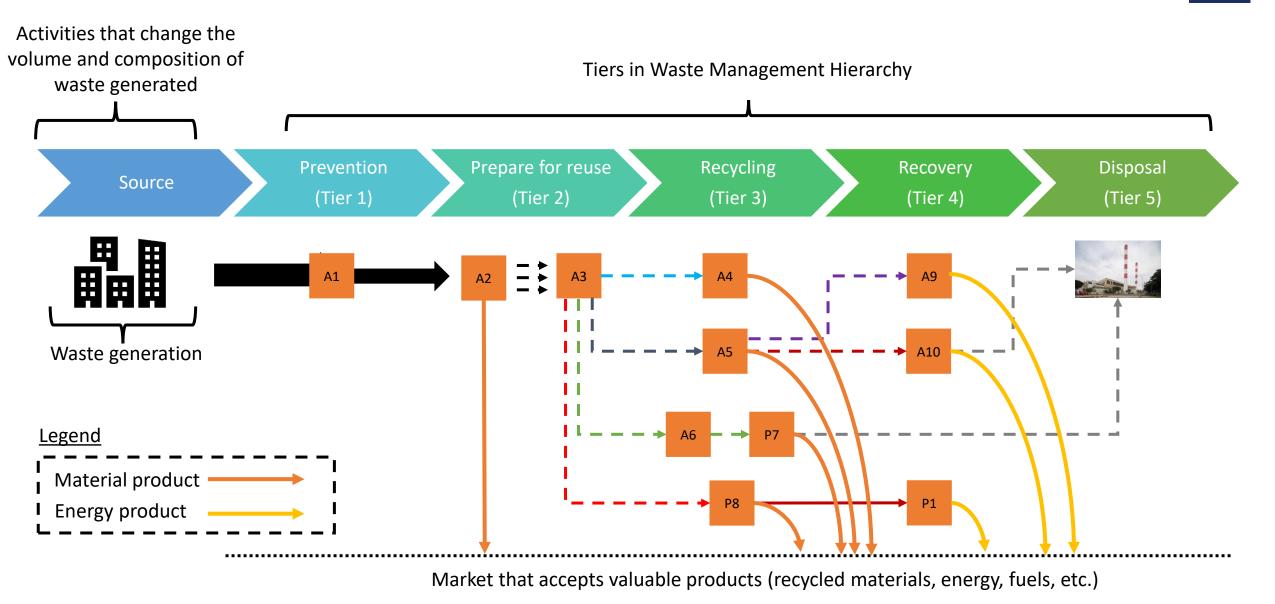
29th May 2023

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB w

Some Examples of Digitization


- 1. Existing tools such ERP for waste collection and handling
- 2. Simulations of waste streams and solutions.
- 3. The Use of Applications (APPs) on mobile devices
- 4. The use of wider extended producer responsibility schemes
- 5. The use of Artificial Intelligence materials identification to advances in AIs for all of the above

Today, we will share some examples of items 2 through 5.



Solutions for Waste

Object Based Modelling - Agents

ADP

Model Parameters and Results

Model uses waste composition data and agent process data to explore and measure the environmental and economic performance of different waste management scenarios.

Waste	Quality	Commonition (0/)	Mana (tanana (day)
	Quality	Composition (%) 20%	Mass (tonnes/day)
Food and kitchen waste			40
	Commingled	40%	80
	Wet	40%	80
Other Organic	Dry recyclable	20%	18
	Commingled	40%	36
	Wet	40%	36
Paper & Cardboard	Dry recyclable	20%	12
	Commingled	40%	24
	Wet	40%	24
Plastics	Dry recyclable	20%	26
	Commingled	40%	52
	Wet	40%	52
Leather and Rubber	Dry recyclable	20%	8
	Commingled	40%	16
	Wet	40%	16
Textile	Dry recyclable	20%	8
	Commingled	40%	16
	Wet	40%	16
Metal	Dry recyclable	20%	8
	Commingled	40%	16
	Wet	40%	16
Glass	Dry recyclable	20%	12
	Commingled	40%	24
	Wet	40%	24
Ceramic & Stone	Dry recyclable	20%	22
	Commingled	40%	44
	Wet	40%	44
Special/Hazardous	Dry recyclable	20%	6
	Commingled	40%	12
	Wet	40%	12
Other/residual	N/A		200
Freewater	•		500
Total			1500

Model Parameters

Category	Input/output flow	Unit	Amount
Waste input	Waste stream	tonnes	-
Ancillary inputs	Labor	person-hours	-
	Land area	hectares	-
	Electricity	kWh	-
	Water	M3	-
Valuable outputs	Energy	MWh	-
	Products	tonne	-
Specialty items	Biodiesel, biochar,	tonno	
	fertilizer, etc.	tonne	-
Less valuable outputs	Digestate	tonnes	-
	Process Water	M3	-
	Outputs to legacy	tonne	-
	Waste (to EfW plant)	tonne	-
Environment	CO2	kg	-
	uPOPs	g	-
	Particulate matter (PM)	g	-
	Sox	g	-
	Nox	g	

Model Results

Economic and Financial Indicators

- Net present value
- Annual shortfall
- Capital costs
- Operating costs

Environmental Indicators

- Greenhouse gases (CO₂-eq)
- Nitrogen oxides (NO_x)
- Sulfur oxides (SO_x)
- Particulate matter (PM)
- Unintentional Persistent Organic Pollutants (UPOPs)

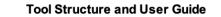
Social Indicators

- Disability adjusted life years
- Jobs male/female
- Jobs formal/informal
- Access to waste services

How the WARPS Tool Works

A Tool for Planning Waste Management Systems and Analyzing the Environmental, Economic, and Social Performance

Introduction and Background


Enabling a circular economy requires strategic planning of waste management systems. Such systems should provide environmental, economic, and social benefits, but can be very complex due to the various types of waste streams and options for managing waste at different stages. The Asian Development Bank has developed this excel-based tool to compare potential waste management systems and measure their environment, economic, and social performance. The tool provides users with a means of taking a first-cut look at a variety of what-if scenarios for managing waste at different scales.

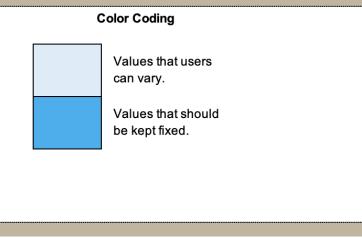
Purpose of Tool

ASSIST policy makers plan out pathways for managing different types of wastes. EXPLORE the effects of prices and policies on waste management systems.

QUANTIFY

environmental, economic, financial, and social performance to inform what aspects a future full feasibility study could focus on.

Step 1: Create waste profile


Step 2: Select agents to design system

Step 3: Set policy and price conditions

Step 4: View results

Step 5: Visualize system in Sankey diagram

For each scenario to be analyzed, the user must download a separate spreadsheet to model and analyze the waste management system designed.

Basic Waste Parameters

ADB

User interface steps

1. Enter waste profile

- 2. Select waste management agents
- 3. Set policy and price conditions
- 4. View results in the dashboard

Scenario Name										
Baseline scenario										
Total MSW waste (tonnes/day)	355		Total industrial waste (tonnes/day)	-						
Name of municipal solid waste stream	Percent	Volume of waste (tonnes/day)	Name of industrial waste stream	Percent	Volume of waste (tonnes/day)					
Food and kitchen waste	0.0%	-	Rice husk	0.0%	-					
Other organic	46.0%	163	Sorted PE	0.0%	-					
Paper and cardboard	15.0%	53	Sorted PET	0.0%	-					
Plastics	21.0%	75	Sorted PP	0.0%	-					
Leather and rubber	0.0%	-	Waste biomass	0.0%	-					
Textile	0.0%	-	Medical waste	0.0%	-					
Metal	6.0%	21	Sorted paper	0.0%	-					
Glass	4.0%	14	Sorted cardboard	0.0%	-					
Ceramic and stone	0.0%	-	Sorted newsprint	0.0%	-					
Special / hazardous	0.0%	-								
Other	8.0%	28								
Confirm Waste Profile										

Setting up Waste Flows

User interface steps

1. Enter waste profile

2. Select waste management agents

- 3. Set policy and price conditions
- 4. View results in the dashboard

Adding Policy Information

(1

In this section, the user can consider implementation of waste reduction policies. To

represent a policy or collection of policies, simply enter: (1) the total estimated cost of the start of the policy

(2) the annual cost of maintaining, if any(3) the estimated percent reduction in waste generation for each type expected to be achieved by

the policy

If there is no waste reduction policy, set all values in the blue cells to zero (0).

User interface steps

- 1. Enter waste profile
- 2. Select waste management agents
- 3. Set policy and price conditions
- 4. View results in the dashboard

🕞 Back	Prices and Poli	cies		Next	\ni			
	Waste reduction	policy						
Estimated policy costs	Examples of waste reduc	ction policies						
Initial policy investment (USD)	Policy	Extended produce responsibility	er Edu	cation campaign		duct redesign o minimize waste	red	ital tool to luce waste eneration
Annual policy cost USD/year)	Initial policy investment (USD)	\$-	\$	-	\$	-	\$	10,000
	Annual policy cost (USD/year)	\$ 150,00	0\$	100,000	\$	500,000	\$	2,000
	(USD/year) Estimated waste reducti	· · · ·		· · ·		500,000	\$	2

Waste stream	Waste reduced through policy	Waste volume before policy (tpd)	Waste volume after policy (tpd)
Food and kitchen waste	0%	0	0
Other organic	0%	163	163
Paper and cardboard	0%	53	53
Plastics	0%	75	75
Leather and rubber	0%	0	0
Textile	0%	0	0
Metal	0%	21	21
Glass	0%	14	14
Ceramic and stone	0%	0	0
Special / Hazardous	0%	0	0
Other	0%	28	28

Inputting Context Specific Economic Data

User interface steps

- 1. Enter waste profile
- 2. Select waste management agents

3. Set policy and price conditions

4. View results in the dashboard

🔶 Bacl	c	Р	rices and Polic	ies	Next			
		Facility-lev	el prices and opera	ting assump	otions			
				General facility	costs			
0				Category	ltem	Unit	Value	
				Waste	Waste collection fee			
This section is for setting the prices and operation conditions that are applicable across all facilities in a waste management system.		onditions that are			(tipping/gate fee)	USD/tonne	\$	-
		ment system.			Waste disposal fee			
					(landfill/incinerator)	USD/tonne	\$	-
			-	Ancillary	Water price	USD/m3	\$	1.50
					Electricity	USD/kWh	\$	0.10
Facility operation assumptions	5				Diesel	USD/liter	\$	0.74
Working days per week	6			Land rental	Land rental	USD/sqm-month	\$	3.49
Weeks per year	52				Initial land purchase	USD		
Working hours per day	10			Labor	Supervisor	USD/person-day	\$	13.97
		_			Middle	USD/person-day	\$	8.73
Eco-industrial park factors*					Helper	USD/person-day	\$	7.68

Adding Market Pricing Information

User interface steps

- 1. Enter waste profile
- 2. Select waste management agents
- 3. Set policy and price conditions
- 4. View results in the dashboard

Back	Prices and Policies Nex			
	Sale value of resource	s to market		
0	Users can use this sheet to set the estimated mor resource (material and/or energy) can	•	a	
Category	ltem	Unit		Value
Physical goods	Sorted food and kitchen waste	USD/tonne	\$	-
	Sorted other organic	USD/tonne	\$	-
	Sorted paper & cardboard	USD/tonne	\$	69.93
	Sorted mixed plastics	USD/tonne	\$	83.92
	Sorted leather and rubber	USD/tonne	\$	-
	Sorted textile	USD/tonne	\$	-
	Sorted metal	USD/tonne	\$	48.95
	Sorted mixed glass	USD/tonne	\$	34.97
	Sorted ceramic & stone	USD/tonne	\$	-
	Sorted special/hazardous	USD/tonne	\$	-
	Mixed RDF from MRF	USD/tonne	\$	-
	Sorted organics	USD/tonne	\$	-
	Polystyrene (PS)	USD/tonne	\$	-
	Polyvinyl chloride (PVC)	USD/tonne	\$	-
	Acrylonitrile butadiene styrene (ABS)	USD/tonne	\$	-
	PET pellets	USD/tonne	\$	-
	PP pellets	USD/tonne	\$	-
	PE pellets	USD/tonne	\$	-
	Black soldier fly larvae protein	USD/tonne	\$	-

Simulation Summary

User interface steps

- 1. Enter waste profile
- 2. Select waste management agents
- 3. Set policy and price conditions
- 4. View results in the dashboard

Summar	y Report						
	Summary of Financial,	Econor	mic, Environm	ent, and Social P	Performance of Waste Managem	ent Sy	stem
			,	~			
-	Financial				Economic		
	Total capital invesment (USD)	\$	210,000,000		Government tax revenue (USD/year)	\$	756,707
	Net present value before tax (USD)	\$	(183,212,883)		Total new jobs		500
	Environment				Social		
	GHG emissions (tonnes CO2-eq)/year)		17,622	2↔2	Access to waste collection services (persons)		681,637
	NOx emissons (kg/year)		16,901	$\widehat{\mathbb{M}}$	Jobs for women		200
	SOx (kg/year)		12	<u>Ч</u> , Д ,	Jobs in formal sector		200
	Particulate matter (kg/year)		59.11755633	ШШ	Jobs in informal sector		300
	uPOPs (kg/year)		0.000		Disability adjusted life years		3.4

Agent Specific Results and Aggregation

User interface steps

1. Enter waste profile

2. Select waste management agents

3. Set policy and price conditions

4. View results in the dashboard

Financial performance results summary

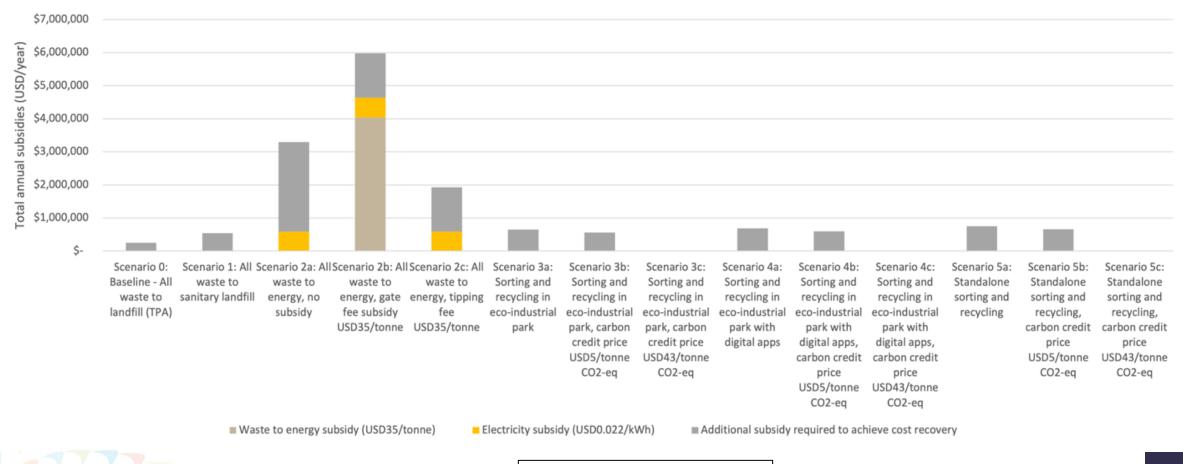
Agent name		Entire system (All agents)	MRF (dirty, mechanical, centralized)	Anaerobic digester	Landfill (non- hazardous waste, sanitary with leachate and gas management)	Resource to Market
	Unit					
Number of facilities		3	1	1	1	
Input amount to agent	Tonnes/day		555.00	234.94	176.42	123.10
Capacity per facility	Tonnes/day		555.00	250.00	555.00	1.00
Maximum capacity	Tonnes/day		555.00	250.00	555.00	
Financial performance						
CAPEX	USD	(14,794,406)	(4,500,000)) (4,700,000)	(5,594,406	i)
Land	USD/year	(174,500)	(34,900)	(139,600)		0
Labor	USD/year	(1,359,755)	(738,473)	(498,857)	(122,426	i)
Electricity	USD/year	(48,485)	(48,485)) 0		0
Water	USD/year	0	C) 0		0
Petrol	USD/year	0	C	0 0		0
Diesel	USD/year	0	C) 0		0
Other	USD/year	(2,208,060)	(109,900)) (2,050,478)	(47,682	2)
Total OPEX	USD/year	(3,790,800)	(931,758)	(2,688,935)	(170,108	3)
Revenue	USD/year	4,595,169	3,042,191	1,552,978		0
Profit/loss before tax	USD/year	804,369	2,110,434	(1,135,957)	(170,108	3)
Tax	USD/year	(422,087)	(422,087)) 0		0
Profit/loss after tax	USD/year	382,282	1,688,347	(1,135,957)	(170,108	3)
NPV before tax	USD	(8,020,216)	13,273,532	(14,266,739)	(7,027,005	9)
NPV after tax	USD	(11,574,922)	9,718,826	(14,266,739)	(7,027,009	9)

More Agent Specific and Aggregation Results

User interface steps

- 1. Enter waste profile
- 2. Select waste management agents
- 3. Set policy and price conditions
- 4. View results in the dashboard

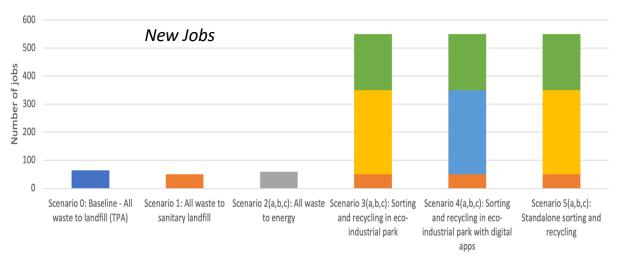
Environmental performance results summary


Agent name		Entire system (All agents)	MRF (dirty, mechanical, centralized)	Anaerobic digester	Landfill (non- hazardous waste, sanitary with leachate and gas management)	Resource to Market
Number of facilities Input amount to agent Capacity per facility Maximum capacity	Unit Tonnes/day Tonnes/day Tonnes/day	3	1 555.00 555.00 555.00	1 234.94 250.00 250.00	1 176.42 555.00 555.00	123.10 1.00
Energy production Electricity Heat Other	MWh/year GJ/year GJ/year	17,255 0 0	0 0 0	17,255 0 0	0 0 0	0
Environmental performance Greenhouse gasses NOx SOx Particulate matter uPOPs uncaptured uPOPs captured (bagged)	e tonnes CO2-eq/year kg/year kg/year kg/year kg/year kg/year	45,344 25,496 2,398 23,614 0.0550 0.0000	0 0 0 0.0000 0.0000	0 25,496 2,398 0 0.0000 0.0000	45,344 0 23,614 0.0550 0.0000	0 0

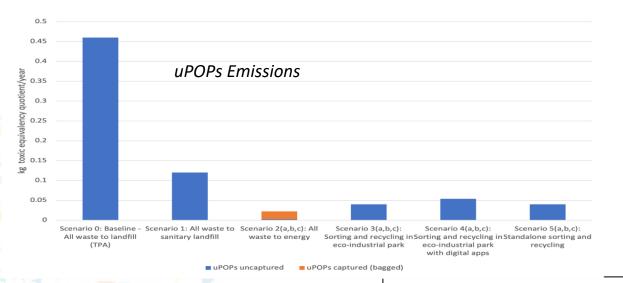
ADB Screening Example – Waste Flow Simulation Anaerobic digester **Energy from Waste** (EfW) Resource to Market **Thermal Project** OR Current waste to landfill Assumes all waste to EfW plant (Open dump scenario 0 Engineered Landfill Scenario 1)) Scenario 2 RDF preparation Landfill landfill Wastewater treatment (mechanical and biological) Wastewater Sorted paper and cardboard Sorted metal Comingled plastic waste Simulation by ADB WARPS tool Sorted glass Residuals Sorted mixed plastic Sorted organics

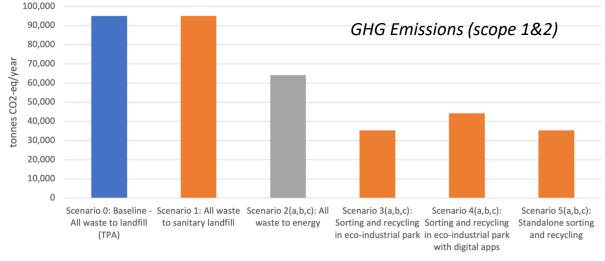
Screening Example – Impacts of Flow Scenarios 1

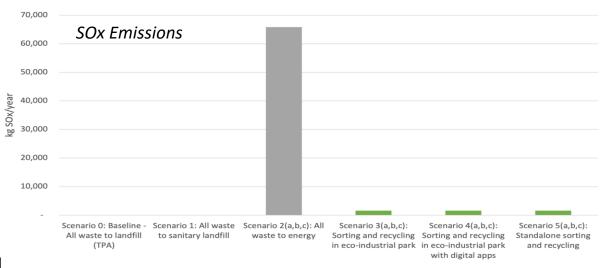
Annual Subsidies for five technology and business model scenarios



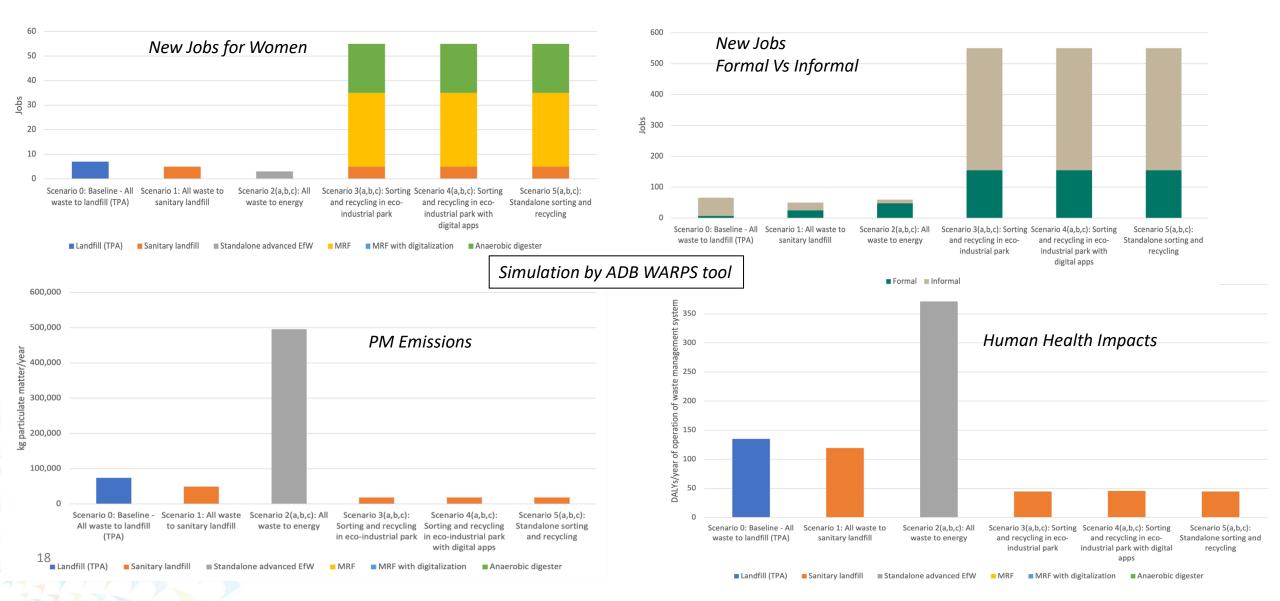
16


Simulation by ADB WARPS tool


Screening Example – Impacts of Flow Scenarios 2



Simulation by ADB WARPS tool


ADB

Landfill (TPA) Sanitary landfill Standalone advanced EfW MRF MRF MRF with digitalization Anaerobic digester

🔳 Landfill (TPA) 📃 Sanitary landfill 🔲 Standalone advanced EfW 📒 MRF 🔳 MRF with digitalization 🔲 Anaerobic digester

Screening Example – Impacts of Flow Scenarios 3 ADB

Outcome of Screening with WARPS

- Rapid simulation of project scenario(s) using WARPS Tool under beta testing. Note mass and waste character changes will change the outcomes. Denser urban areas with high waste volumes will better suited to EfW processing of unrecyclable mixed waste depending on context.
- Ability to handle complexity, **context**, technology types, waste character, waste volumes and incremental changes in overall service delivery.
- Supportive and engaging to create better outcomes for ADB clients and stakeholders. Not a replacement for Detailed Feasibility Studies.
- ADB recognizes the support of the Australian Department of Foreign Affairs and Trade for the funding support for this study through the Australia ASEAN Smart Cities Trust Fund.

Mobile APPs - Study of RECITY Waste APP

RE

A COLLECTIVE CHANGE, FOR YOU, BY YOU

Geo Tag Property Units

ମୋଟ ଓଜନ 124 ଅଜିଆ ଓଜନ ୟୁନିତ୍ ର ସଂଖ୍ୟା ସାଖଲ କର |

 \circ

DOMESTIC BIO-MEDICAL

Daily Covid Waste Collection

Transfer To Waste to Energy Facility Record Of Waste To WTE Facility

Note: Mobile application in local language - Odia

Artificial Intelligence Applications

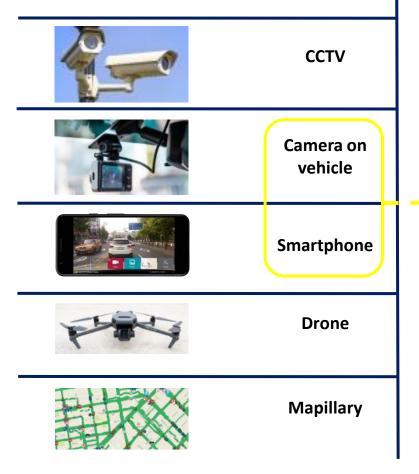
Al is Ubiquitous in modern life from airline booking bots to machine learning algorithms used optical character recognition....(and ChatGPT!)

Emerging AI applications can query a large data set to discern patterns which may not be evident. Enhanced ability to demonstrate feed stock for recycling, reuse and energy recovery.

This might include the linking of waste pickup trucks with air quality and local sanitation information (i.e. Deep Trasher) to determine areas where enhanced community engagement/enforcement is needed to stop dumping.

Further development AI in ADBs operations under ADB Artificial Lab in collaboration with Amazon Web Services (AWS).

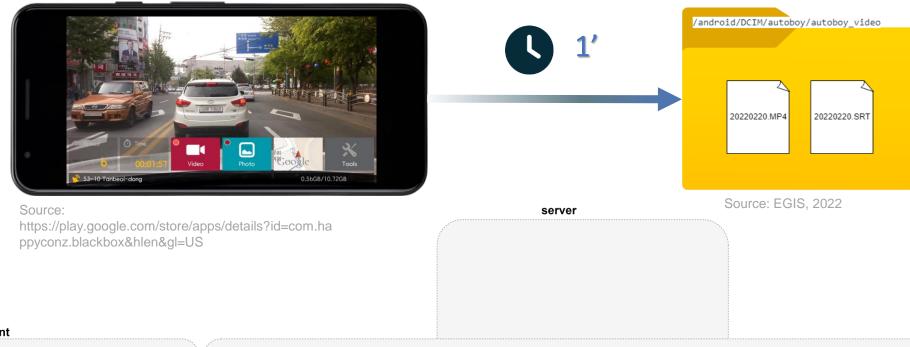
When you think Artificial Intelligence...

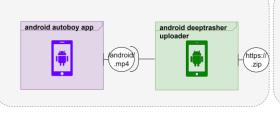


Which data collection method to choose?

		1 3	₽ C	Criteria
	ССТV	<i>C</i> 1	š 🍤 💿 🌐	Update frequency
	Camera on vehicle		† š	Cost is Deployment
	Smartphone	پار 🕲 💭	S	Acuracy
FRANC	Drone	© 🇘	Cti S M	Spatial coverage
	Mapillary	€†₫₩®⊕		-

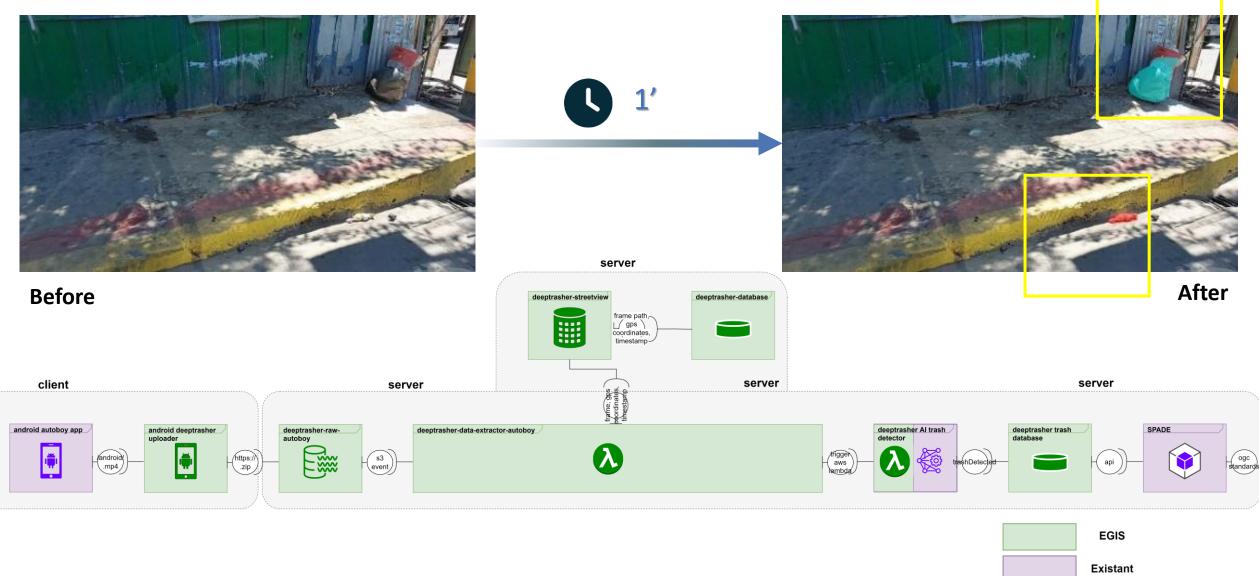
A choice guided by simplicity and low costs



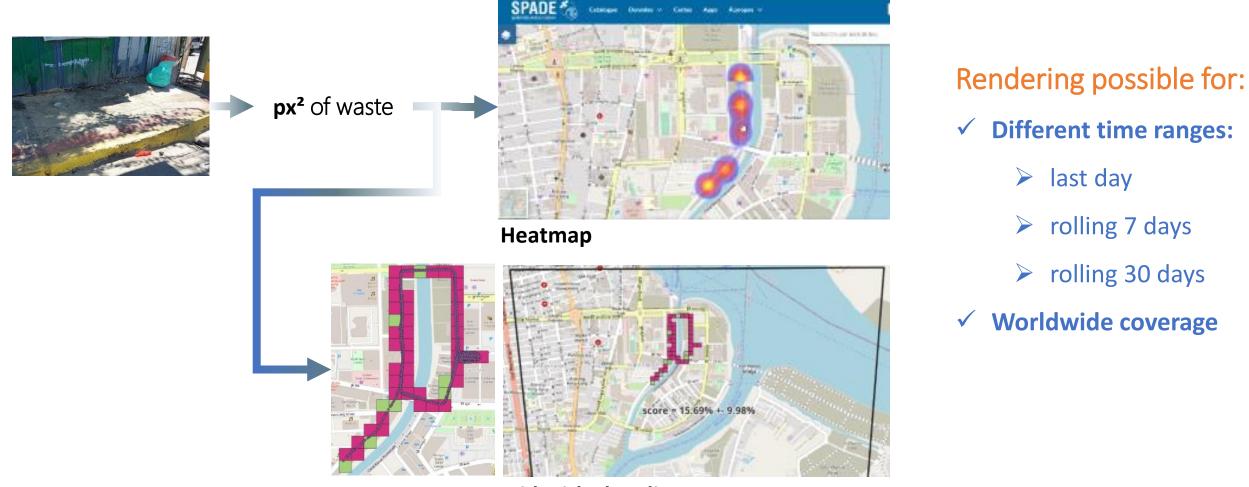

Creating data on-demand

Android Autoboy App

Android Deeptrasher Uploader


client

EGIS


INSTANT IMAGE RECOGNITION

Rendering on ADB SPADE Platform

Grid with cleanliness score

Next Steps

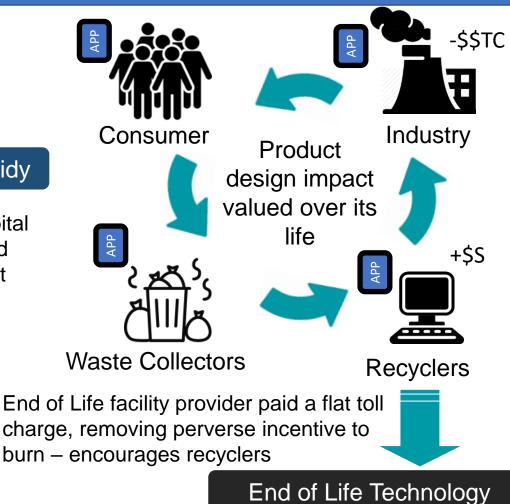
Future actions:

- ✓ Integrating a number of non-AI applications with AI enable applications to build a suite of tools for ADB Developing Member Countries under ADB AI Lab (in collaboration with AWS).
 - a. Simulate waste supply chains and game various scenario for solutions.
 - b. Track the performance of waste supply chains and link outcomes from Deep Trasher to planning scenarios.
 - c. Query data for opportunities for localized recycling, upcycling or business process changes to reduce cost and increase amenity.
 - d. Integrate solution into wider circular economy value chain.
 - e. Integrate Extended Produce Responsibility Platforms with AI to query outcomes and optimize economic, social and environmental outcomes.

Digitizing the Circular Economy – EPR – Extended Producer Responsibility

Platform & APP linking import/sale, location & treatment charge (TC)/subsidy (S) over product lifecycle

<u>Government</u> Create regulatory environment, owns platform, collects revenue (TC) & disburses subsidy (S)


Policy, Regulation, Taxation & Subsidy

Changes deployment of capital to more attractive subsidized waste activities & low impact FMCG companies

Capital with Confidence

Waste managed to be within ecosystem services boundary

In Conclusion

- Digitization is the "low hanging fruit" for Energy and Waste.
- The use of satellite based data, especially remote sensing of CO_2 and CH_4 will bring waste and energy practice into wide view. Blog <u>here</u>.
- Moving along the digitization pathway allows for acceleration in our efforts on Just Energy Transition. Blog <u>here</u>.
- Many of you will have already embarked on this journey whilst others are not yet mobilized. I wish you well on your journey.
- Thank You

Steve Peters – <u>speters@adb.org</u>